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Abstract. The states with Jπ = 0+, 2+, and 4+ of 12C with excitation energies less than about 15 MeV are
investigated with the alpha condensate wave function with spatial deformation and by using the method
of ACCC (analytic continuation in the coupling constant) which is necessary for a proper treatment of
resonance states. The calculated energy and width of the recently observed 2+

2 state are found to be well
reproduced. The obtained 2+

2 wave function has a large overlap with a single condensate wave function
of 3α gas-like structure. The density distribution is shown to be almost the same as that of the 0+

2 state
that is regarded as a 3α Bose-condensed state, if the energy of the 2+

2 state is scaled down to the same
value as the one of the 0+

2 state. Furthermore, the kinetic energy, nuclear interaction energy, and Coulomb
interaction energy of the calculated 2+

2 state are shown to be very similar to those of the 0+
2 state. We

conclude that the 2+
2 state has a structure similar to the 0+

2 state of Bose-condensate character with a
dilute 3α gas-like structure. In addition, the resonance states, 0+

3 , 0
+
4 , 4

+
2 , are also discussed.

PACS. 21.60.Gx Cluster models

1 Introduction

In our previous paper [1], we made the strong suggestion
that 12C, 16O, and other self-conjugate 4n nuclei should
have a gas-like structure of alpha particles in their excited
states near the nα breakup threshold, and that this struc-
ture could be regarded as a kind of Bose-Einstein conden-
sate, though only a few bosons are concerned in nuclear
systems. The 0+

2 state of 12C, called the Hoyle state and
observed at 0.38 MeV above the 3α threshold, and the 0+

5
state of 16O, observed at 0.44 MeV below the 4α thresh-
old, were indentified as candidates of the three-alpha con-
densed state and a possible candidate of the four-alpha
condensed state, respectively by an investigation where
the following type of wave function was adopted:

Φnα ∝ A
[ n∏

i=1

exp
(
−2X

2
i

B2

)
φ(αi)

]
. (1)

Here φ(αi) ∝ exp[−(1/2b2)
∑4

j (rj(i) − Xi)
2] and Xi =∑4

j rj(i)/4, with j(i) ≡ 4(i − 1) + j, are the internal
wave functions and center-of-mass coordinates of the i-th
alpha cluster, respectively. This wave function has the
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characteristic feature that all center-of-mass motions of
the constituent alpha clusters occupy the same spherical
S-wave orbit, exp(−2X2/B2). It also distinguishes itself
from other α cluster models by the fact that the alpha clus-
ters do not have any definite geometric configuration, but
are allowed to move freely with small inter-alpha correla-
tions or interactions, forming a dilute gas-like structure. It
should be noted that the above-mentioned characteristics
can be put forward only as far as the variational parame-
ter B takes a sufficiently large value so that the action of
the antisymmetrizer, A, is weak and almost negligible.

It is to be noted that the excited state of a self-
conjugate 4n nucleus which has a well-developed nα clus-
ter structure around the nα breakup threshold has almost
zero inter-alpha binding energy and is only held together
by the Coulomb barrier. Since α-particles are bosons, the
gas-like state with almost zero inter-alpha binding energy
is naturally considered to have Bose-condensed structure
(see also [2]).

For the n = 3 case, i.e. 12C, detailed analysis was made
by several authors about a quarter century ago, and they
revealed the fact that several excited states observed in
the vicinity of the 3α particle threshold have an apparent
3α cluster structure [3–6]. Especially, complete 3α calcu-
lations with fully microscopic models were performed by
two groups, Uegaki et al. [4], and Kamimura et al. [5]. The
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calculated binding energy of the 0+
2 state was not much

different from the experimental value which is 0.38 MeV
above the 3α threshold. The 0+

2 state was shown to be
dominated by the channel, I = l = 0. Here I and l indicate
the spin of 8Be and the orbital angular momentum of the
relative motion between 8Be and alpha particle, respec-
tively [4]. This is consistent with the result of the semi-
microscopic calculation with OCM (orthogonality condi-
tion model) made by Horiuchi, where three alpha particles
weekly interact in relative S-waves [6]. The 0+

2 state was
shown to have a large reduced α-width, θ2(a) = 0.68 in
units of the Wigner limit, γ2

W = 3~2/2µa2, when the chan-
nel radius, a = 6 fm, for I = l = 0. Here µ is the reduced
mass between 8Be and the α-particle and θ2(a) = γ2/γ2

W,
where γ2 is the reduced α-width (see eq. (29) of sect. 2.5).

According to the suggestion made in ref. [1] mentioned
above, we investigated the 0+

2 state of 12C by using a de-
formed alpha condensate wave function which only slightly
deviates from the spherical one, eq. (1) [7]. We found that
each of the 0+

2 wave functions, obtained by the full 3α
microscopic calculations of refs. [4] and [5], has a large
squared overlap value of more than 90% with the single
condensate wave function of 3α gas-like structure. This
result gives decisive theoretical evidence that the 0+

2 state
can be understood as a 3α condensed state.

The present paper will mainly focus on the explo-
ration of the excitation modes of the finite alpha conden-
sate by studying the states of 12C with quantum numbers
Jπ = 0+, 2+, and 4+ with excitation energies less than
about 15 MeV. The exploration is made by using an α con-
densate wave function with spatial deformation. In spite
of the fact that the existence of the 2+

2 state has been sug-
gested at around 3.0 MeV above the 3α threshold by the
former theoretical works [3–5], it was only quite recently
that the 2+

2 state was observed at 2.6 ± 0.3 MeV above
the 3α threshold together with the alpha decay width,
1.0 ± 0.3 MeV [8]. Morinaga expected the existence of a
rotational band with the 0+

2 state as the band head and
assumed a 3α linear-chain structure as the intrinsic struc-
ture of the band [9]. However, as already mentioned above,
this assumption is now hardly acceptable because the 3α
structure of the 0+

2 state is far from that of a linear-chain
configuration of 3α particles. The 2+

2 state, in view of
the microscopic 3α cluster model calculations [4], is dom-
inated by the channel, I = 0 and l = 2, and has a large
reduced α-width amplitude, θ2(a) = 0.63, with the chan-
nel radius, a = 6.0 fm. This fact indicates not only that
this state has a well-developed 3α cluster structure like
the 0+

2 state, but also that the 2+
2 state will be able to

be classified in the same family as the 0+
2 state in which

the single channel, I = l = 0 is dominant. Besides the 2+
2

state, the 0+
3 state was observed at 3.0 MeV above the 3α

threshold together with a broad width, 3.0±0.7 MeV [10].
However, there are no calculations that reproduce the en-
ergy of this state satisfactorily. Though the binding energy
is higher by about 3 MeV than experimental observation,
the 0+

3 state obtained in ref. [4] has large reduced α-width
amplitudes of both channels, [I ⊗ l] = [0⊗ 0] and [2⊗ 2].
The density distribution of the 0+

3 state calculated by the

AMD method (antisymmetrized molecular dynamics) ap-
pears to be somewhat similar to a linear-chain configura-
tion of three alpha particles [11]. Recently a very similar
result was reported about the 0+

3 state by FMD (Fermionic
molecular dynamics) calculation [12].

In order to explore the excitation modes of the 3α con-
densate, we study the 2+

2 and 0+
3 states by a GCM (gen-

erator coordinate method) calculation in which deformed
3α condensate wave functions are superposed. This type
of GCM calculation was successfully used in our previ-
ous paper [7] for the study of the 0+

2 state. However, the
GCM calculation was not successful for the 2+

2 and 0+
3

states, because this GCM calculation is a bound-state ap-
proximation in spite of the fact that these states are res-
onances with rather large widths of more than 1 MeV,
while the width of the 0+

2 state is very small of only a
few eV. Thus, in order to overcome this defect, we ap-
ply, beyond the bound-state approximation, the method
of ACCC (analytic continuation in the coupling constant)
to our previous formalism. This method was first proposed
by Kukulin et al. [13], and is now recognized as a power-
ful method to calculate the energy and total width of a
resonance state [14,15].

The main result of the present paper is that the mi-
croscopic 3α condensate wave function with spatial defor-
mation is able to reproduce consistently both energy and
total width of the recently observed 2+

2 state by the appli-
cation of the method of ACCC. Furthermore, the 2+

2 state
is found to be mostly represented by a single 3α conden-
sate wave function with slightly deformed shape, where
the resonance wave function of the 2+

2 state is obtained
by the use of our newly devised technique which allows us
to extract correct resonance wave functions even within
the formalism of bound-state approximation. The density
distribution is shown to be almost the same as that of
the 0+

2 state which is considered as a 3α Bose-condensed
state, if the binding energy of the 2+

2 state is adjusted to
the same value as the one of the 0+

2 state. The kinetic en-
ergy, nuclear interaction energy, and Coulomb interaction
energy of the calculated 2+

2 state are further shown to be
very similar to those of the 0+

2 state. These results indicate
that the 2+

2 state has a structure closely related to the 0+
2

state where three alpha particles form a gas-like structure
with dilute density. On the other hand, we found that our
present functional space of the α condensate wave func-
tion in which strongly prolate condensed wave functions
are not included is, presumably, not well adapted to rep-
resent the 0+

3 state. This point of view may be reasonable
if the 0+

3 state has 3α linear-chain–like structure.
The content of this paper is as follows. In sect. 2,

the formulation of the present aproach is explained. A
brief description of our GCM approach in which the de-
formed condensate wave functions are superposed after
angular-momentum projection and the complete elimina-
tion of the center-of-mass spurious components is given.
The ACCC method is also outlined there. The results of
the GCM calculations for the 0+

1 , 2
+
1 , 4

+
1 , and 0+

2 states
are given in sect. 3.1. The states are treated within the
bound-state approximation. In sect. 3.2, the calculations
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of the energies and widths of the 2+
2 and 4+

2 states are pre-
sented in which the method of ACCC is used. The wave
functions of the 2+

2 and 4+
2 are analysed in the following

section 3.3. There we introduce a new approximate proce-
dure to estimate the wave functions of the resonances. In
sect. 3.4, we calculate the energies and widths of the 0+

3

and 0+
4 states by using the method of ACCC. We make

the same analyses for the wave functions as in sect. 3.3.
In sect. 4.1, we check how much Jπ = 0+ and 2+ compo-
nents are contained in the deformed intrinsic wave func-
tion of the alpha condensate. In sect. 4.2, we show that
if only the orthogonality between the 0+

1 and 0+
2 states is

imposed, the structure of the 0+
2 state is not influenced

by the detailed structure of the 0+
1 state. In sect. 2.3, we

demonstrate that the oblate and prolate deformed intrin-
sic wave functions of the alpha condensate give similar
wave functions after the angular-momentum projection.
Conclusions are given in sect. 5. In the appendix A, we
give the explicit calculus of the density distribution in
which the center-of-mass spurious components are com-
pletely eliminated.

2 Formulation

2.1 Deformed intrinsic nα condensed wave function

The deformed nα condensed wave function was first pro-
posed in ref. [16] as a natural modification of the spheri-
cal shape of wave function, eq. (1). In this subsection, we
explain how to derive the angular-momentum–projected
wave function from the deformed nα condensed wave func-
tion. The deformed nα condensed state can be expressed
as given below, taking C†

α as a creation operator of an
α-particle with tri-axial variational parameters, βx, βy, βz,

|Φnα〉 = (C†
α)

n|vac〉, (2)

where

C†
α =

∫
d3R exp

(
− R2

x

β2
x

−
R2

y

β2
y

− R2
z

β2
z

)∫
d3r1 · · · d3r4

×ϕ0s(r1−R)a†σ1τ1(r1) · · ·ϕ0s(r4−R)a†σ4τ4(r4). (3)

In the above equation, a†στ (r) is a creation operator of
one nucleon with spin σ, isospin τ at a spatial point r,
and ϕ0s(r −R) is a 0s harmonic-oscillator wave function
around a center R with the size parameter b as follows:

ϕ0s(r −R) = (πb2)−3/4 exp

{
− (r −R)2

2b2

}
. (4)

In order to write down the wave function of the deformed
nα condensed state (2) in coordinate space and also to per-
form numerical calculations of matrix elements of physical
quantities, it is necessary to introduce Brink’s nα cluster
model wave function [17], ΦB(R1, · · · ,Rn) defined as

ΦB(R1, · · · ,Rn) ≡
1√
(4n)!

det{ϕ0s(r1 −R1)χσ1τ1

· · ·ϕ0s(r4n −Rn)χσ4nτ4n
}. (5)

Here χστ is a spin-isospin wave function of a nucleon. From
eqs. (2), (3), the deformed nα condensed wave function
can be written as a superposition of the Brink’s nα clus-
ter model wave functions multiplied by a single deformed
Gaussian wave packet of R1, · · · ,Rn with the width, βi,
(i = x, y, z), in the following way:

Φnα(β) ≡ 〈 r1σ1τ1, · · · r4nσ4nτ4n|Φnα 〉 =
∫

d3R1 · · · d3Rn exp

{
−

n∑

i=1

(
R2

ix

β2
x

+
R2

iy

β2
y

+
R2

iz

β2
z

)}

×ΦB(R1, · · · ,Rn), (6)

β ≡ (βx, βy, βz). (7)

It is easy to perform the above integration over the vari-
ables, R1, · · · ,Rn, as shown in ref. [16] in detail. Con-
sequently, the deformed nα condensed wave function is
simply given by

Φnα(β)∝A
[

n∏

i=1

exp

{
−
(
2X2

ix

B2
x

+
2X2

iy

B2
y

+
2X2

iz

B2
z

)}
φ(αi)

]
.

(8)
Here, B2

k = b2 + 2β2
k, (k = x, y, z). The other nota-

tions are the same as used in eq. (1). A is the antisym-
metrizer operating on all nucleons in the system. It should
be noted that eq. (8) shows that the center-of-mass mo-
tions of nα particles occupy the same deformed orbit,
exp(−2X2

x/B
2
x−2X2

y/B
2
y−2X2

z/B
2
z ). It is also to be noted

that the normalized nα condensed wave function, eq. (8)
coincides with the shell model Slater determinant when
βi → 0 (i = x, y, z) as a limit. This is an important prop-
erty that is taken over from Brink’s wave function. On the
contrary, the nα condensed wave function corresponds to
a free nα particle state in which nα particles do not cor-
relate with each other when βi →∞ (i = x, y, z).

The α condensed wave function with good quantum
number of angular momentum is derived by projecting out
the angular momentum from the deformed α condensed
wave function in the following way:

ΦJ
nα(β) =

∫
dΩDJ∗

MK(Ω)R̂(Ω)Φnα(β) =

∫
dΩDJ∗

MK(Ω)

∫
d3R1 · · · d3Rn

× exp

(
−

n∑

i=1

∑

k=x,y,z

R2
ik

β2
k

)

×ΦB(R−1(Ω)R1, · · · , R−1(Ω)Rn) =∫
dΩDJ∗

MK(Ω)

∫
d3R1 · · · d3Rn

× exp

{
−

n∑

i=1

∑

k=x,y,z

(R(Ω)Ri)
2
k

β2
k

}
ΦB(R1, · · · ,Rn),

(9)

where Ω is the Euler angle, DJ
MK(Ω) the Wigner

D-function, R̂(Ω) the rotation operator, and R(Ω) the
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〈
Φ̂Jnα(β)

∣∣Ô
∣∣Φ̂Jnα(β′)

〉
√〈

Φ̂Jnα(β)
∣∣Φ̂Jnα(β)

〉〈
Φ̂Jnα(β′)

∣∣Φ̂Jnα(β′)
〉 =

∫
d cos θ dJ00(θ)

〈
Φ̂nα(β)

∣∣ÔR̂y(θ)
∣∣Φ̂nα(β′)

〉
√∫

d cos θ dJ00(θ)
〈
Φ̂nα(β)|R̂y(θ)

∣∣Φ̂nα(β)
〉
·
∫
d cos θ dJ00(θ)

〈
Φ̂nα(β′)|R̂y(θ)

∣∣Φ̂nα(β′)
〉 =

∫
d cos θ dJ00(θ)

〈
Φnα(β)

∣∣ÔR̂y(θ)
∣∣Φnα(β′)

〉
/P0(θ)√∫

d cos θ dJ00(θ)
〈
Φnα(β)

∣∣R̂y(θ)
∣∣Φnα(β)

〉
/P1(θ) ·

∫
d cos θ dJ00(θ)

〈
Φnα(β′)

∣∣R̂y(θ)
∣∣Φnα(β′)

〉
/P2(θ)

. (15)

3× 3 rotation matrix corresponding to R̂(Ω). Here use
is made of the relation ϕ0s(R(Ω)r − R) = ϕ0s(r −
R−1(Ω)R). We should note that the rotation with respect
to the total angular momentum is equivalent to the rota-
tion with respect to the total orbital angular momentum,
since the intrinsic spins of the α clusters are saturated.

Throughout the present paper, all calculations are per-
formed with the restricton to axially symmetric deforma-
tion in the same way as our previous work, ref. [16], where
the z-axis is taken as the symmetry axis: βx = βy 6= βz.
Thus, the formulas used in eq. (9) are simplified as follows,





∫
dΩ −→ 4π

∫
d cos θ ,

DJ∗
MK(Ω) −→ dJM0(θ) ,

R̂(Ω) −→ R̂y(θ) ,
R(Ω) −→ Ry(θ).

(10)

In all the following sections, we make use of the notation,
β to express (βx = βy, βz).

2.2 Elimination of spurious center-of-mass motion

The total center-of-mass motion can be easily separated
out of the nα condensed wave function (8) as follows:

Φnα(β) ∝ exp

{
− 2n

B2
x

(X2
Gx+X

2
Gy)−

2n

B2
z

X2
Gz

}
Φ̂nα(β),

(11)

Φ̂nα(β) = A




n∏

i=1

exp



−

∑

k=x,y,z

2

B2
k

(Xik−XGk)
2



φ(αi)


 ,

(12)

Clearly Φ̂nα(β) does not contain the total center-of-mass
coordinate, XG, of the system and it is the internal wave
function of Φnα(β). All the calculations are not made with

Φnα(β) but with Φ̂nα(β) which is an eigenstate of total
momentum with eigenvalue zero. Thus, the proper α con-
densed wave function with a good quantum number of
angular momentum is not ΦJ

nα(β) represented by eq. (9)

but Φ̂J
nα(β) defined as

Φ̂J
nα(β) =

∫
d cos θ dJM0(θ)R̂y(θ) Φ̂nα(β). (13)

In later subsections we use the notation Φ̂N,J
3α (β) in order

to express the normalized state of Φ̂J
3α(β)

Φ̂N,J
3α (β) =

Φ̂J
3α(β)√〈

Φ̂J
3α(β)

∣∣Φ̂J
3α(β)

〉 . (14)

Since in ref. [16], we have given a detailed explanation of
how to derive the matrix elements of a general transla-

tionally invariant scalar operator Ô using the wave func-
tion with good quantum number of angular momentum,

Φ̂J
nα(β), we only give a brief outline here. While in ref. [16],

we examined only the diagonal components of the matrix
elements in the parameter space β, we, in this paper, need
to refer to the case of the off-diagonal components. We can
write down the matrix elements in which the contribution
of the spurious center-of-mass motion is eliminated, as fol-
lows:

see eq. (15) above

Here the functions P0(θ), P1(θ), and P2(θ) stem from the
degrees of freedom of the center-of-mass motion and can
be easily calculated analytically. We give the explicit form
of P0(θ) below. The expression of P1(θ) is given by simply
changing B′

x, B
′
y, and B′

z that appear in the following
expression of P0(θ), to Bx, By, and Bz. And the expression
of P2(θ) is similarly given by simply changing Bx, By, and
Bz that appear in the following expression of P0(θ), to B

′
x,

B′
y, and B

′
z:

see eq. (16) below

2.3 Approximate equivalence between prolate and
oblate deformed wave functions after
angular-momentum projection with the exception of
strongly prolate deformation

The nα condensate wave function with good angular mo-

mentum Φ̂J
nα(β) has a very characteristic property that

Φ̂J
nα(β) obtained from a prolate intrinsic state can be

obtained approximately from an oblate intrinsic state
and vice versa, except for the case of strongly pro-
late deformation. In fig. 1, we show the squared over-

lap, |〈Φ̂N,J=0
3α (β)|Φ̂N,J=0

3α (β1)〉|2, in the parameter space,
β, where β1 ≡ (5.7 fm, 1.3 fm). Figure 1 shows that
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P0(θ) =

〈
exp

(
−

∑

k=x,y,z

2n

B2
k

X2
Gk

)∣∣∣∣R̂y(θ)

∣∣∣∣ exp
(
−

∑

k=x,y,z

2n

B′2k
X2
Gk

)〉
=

√(
π

2n

)3 B2
xB′2x B2

yB′2y B2
zB′2z

(B2
y +B′2y ){(B2

x +B′2x )(B2
z +B′2z ) + (B2

x −B2
z)(B′2x −B′2z ) sin

2 θ}
. (16)

exp

{
− 2

n−1∑

i=1

µi

(
ξ2ix + ξ2iy

B2
x

+
ξ2iz
B2
z

)}
= exp

[
− 2

n−1∑

i=1

µi

{(
2

3B2
x

+
1

3B2
z

)
ξ
2
i +

(
1

3B2
z

−
1

3B2
x

)√
16π

5
ξ
2
i Y20(ξ̂i)

}]
=

exp

{
− 2

(
2

3B2
x

+
1

3B2
z

) n−1∑

i=1

µiξ
2
i

}[
1− 2

(
1

3B2
z

−
1

3B2
x

)√
16π

5

n−1∑

i=1

µiξ
2
i Y20(ξ̂i) + · · ·

]
. (18)
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Fig. 1. Contour map of the squared overlap,

|〈Φ̂N,J=0
3α (β)|Φ̂N,J=0

3α (β1)〉|
2, in the two-parameter space,

βx(= βy) and βz, where β1 = (βx = βy = 5.7 fm, βz = 1.3 fm).
The harmonic-oscillator size parameter b = 1.35 fm.

the 0+ wave functions with prolate and oblate deforma-
tion are nearly equivalent to each other. On the con-
trary to fig. 1, we show in fig. 2 the squared over-

lap |〈Φ̂N,J=0
3α (β)|Φ̂N,J=0

3α (βL)〉|2 in the parameter space
of β, where βL = (0.1 fm, 4.0 fm) which expresses
a strongly prolate deformation. This figure shows that
the angular-momentum–projected wave function obtained
from a strongly prolate deformation with βx = βy< 0.5 fm
can never be similar to any projected wave function from
oblate deformation.

We show below that the seemingly strange behavior of
fig. 1 is a generic results in nα systems.

At first, we rewrite eq. (12) in terms of the Jacobi
coordinates,

Φ̂nα(β) = A
[
exp

{
−2

n−1∑

i=1

µi

(
ξ2ix + ξ2iy
B2

x

+
ξ2iz
B2

z

)}
φn(α)

]
,

(17)
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Fig. 2. Contour map of the squared overlap,
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3α (βL)〉|
2, in the two-parameter space,

βx(= βy) and βz, where β1 = (βx = βy = 0.1 fm, βz = 4.0 fm).
The harmonic-oscillator size parameter b = 1.35 fm.

where the Jacobi coordinates, ξi andXG (i = 1, · · · , n−1),
satisfy the following relation:





ξi = Xi+1 − 1
i

∑i
j=1 Xj ,

XG = 1
n

∑n
j=1 Xj ,

µi = i
i+1 , (i = 1, · · · , n− 1).

Furthermore, in eq. (17), the exponent, (ξ2
ix + ξ2iy)/B

2
x +

ξ2iz/B
2
z , can be rewritten as

ξ2ix + ξ2iy
B2

x

+
ξ2iz
B2

z

=

(
2

3B2
x

+
1

3B2
z

)
ξ2
i +

(
1

3B2
z

− 1

3B2
x

)

× (2ξ2iz − ξ2ix − ξ2iy) =
(

2

3B2
x

+
1

3B2
z

)
ξ2
i +

(
1

3B2
z

− 1

3B2
x

)√
16π

5
ξ2
i Y20(ξ̂i),

where ξ̂i is the polar angle of ξi. Thus, the exponential
term in eq. (17), i.e. the relative coordinate parts of the
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wave function between n alpha clusters, can be expanded
as follows:

see eq. (18) above

In the above expansion, the parameter, (3B2
z )

−1 −
(3B2

x)
−1, takes the opposite sign between prolate and

oblate deformation so that the overlap between the wave
functions, eq. (17) with prolate and oblate deforma-
tion, cannot become large. However, once the wave func-
tion with good angular momentum is projected out of
the wave function of eq. (17), the above statement is
no longer true. From the expansion of eq. (18), the
angular-momentum–projected wave function of the 0+

state takes the following form for the leading term:

A
[
exp

{
−2
(

2

3B2
x

+
1

3B2
z

) n−1∑

i=1

µiξ
2
i

}
φn(α)

]
. (19)

Also for the 2+ state, the leading term is

A
[
exp

{
−2
(

2

3B2
x

+
1

3B2
z

) n−1∑

i=1

µiξ
2
i

}

×
n−1∑

i=1

µi ξ
2
i Y20(ξ̂i)φ

n(α)

]
. (20)

Equations (19) and (20) show that the angular-
momentum–projected wave function of the 0+ state as
well as the 2+ state can be parametrized by the sole co-
efficient 2(3B2

x)
−1 + (3B2

z )
−1. Thus, it follows that the

angular-momentum–projected wave functions from pro-
late and oblate intrinsic states cannnot become so much
different from one another but rather they are close to
each other as long as the values of 2(3B2

x)
−1 + (3B2

z )
−1

stay similar. It is to be noted that this analysis is true for
a general nα system in as much as the leading terms of
eqs. (19), (20) are dominant.

2.4 Hill-Wheeler equation

In this subsection, we give a brief outline of the GCM
approach. In order to discuss the quasi-bound states as
well as bound states, we solved the following Hill-Wheeler
equation by superposing the wave functions of eq. (13)
with good quantum numbers of angular momentum in
which the center-of-mass spurious components are com-
pletely eliminated,

∑

β′

〈
Φ̂J

3α(β)
∣∣(H − E)

∣∣Φ̂J
3α(β

′)
〉
fJλ (β

′) = 0. (21)

The solution of the above equation leads to the wave func-
tion as

ΨJ
λ =

∑

β

fJλ (β)Φ̂
J
3α(β). (22)

In this paper, we do not superpose prolate deformed

wave functions but only Φ̂J
3α(β) whose β’s satisfy the re-

lation 0.5 fm ≤ βz ≤ βx = βy ≤ 20.25 fm. The numbers

of the adopted wave functions are 61 and 75 for Jπ = 0+

states and the other Jπ states, respectively. The reason of
this choice of our functional space is that, as discussed in
sect. 2.3, the prolate and oblate deformed wave functions
are similar except for the case of strongly prolate defor-
mation. The superposition of the similar wave functions
sometimes causes numerical inaccuracy. We can confirm
that the restricted functional space which we adopt is suf-
ficient to reproduce the 0+

1 , 2
+
1 , and 0+

2 states. For these
three states, we solved eq. (21) in our previous paper of
ref. [7], where both the oblate and prolate wave functions
including strongly prolate ones are superposed. We will see
that the binding energies and r.m.s. radii of these states
obtained in the previous paper are completely the same
as the present results given in table 1 of sect. 3.1.

For the 2+
2 state, we have found that the density dis-

tribution and the transition density between the 2+
2 and

0+
1 states obtained in this paper are almost equivalent to

those calculated by the wave functions obtained by solv-
ing microscopic full-three-α problems without any model
assumptions [5]. We will give the detailed discussion about
this finding in our next paper.

2.5 Analytic continuation in the coupling constant

Besides the 0+
2 state which has a narrow width, other

excited states located above the 3α threshold have non-
negligible widths. In order to discuss resonance states that
have broad widths, we go beyond the framework of the
bound-state approximation by using the ACCC method.

In the ACCC method, we introduce an attractive
pseudo-potential, V , which is added to the microscopic
Hamiltonian H in the following way:

H ′(δ) = H + δ × V, (23)

where δ is a newly introduced coupling constant. The ba-
sic idea of the ACCC method is to distinguish resonance
states from continuum states by increasing the coupling
constant δ from the physical value, δ = 0, and making
the interaction unphysically attractive. As a result of this
operation, the energy of a resonance state goes below the
3α threshold, while a continuum state never goes under
the 3α threshold. This operation allows us to handle the
resonance states within the framework of the bound-state
approximation.

In this work, we adopted the following form for the
pseudo-potential:

V = −1

2

12∑

i6=j

80 [MeV] exp

(
−

r2ij
(2.5 [fm])2

)
. (24)

The reason why we assign 2.5 fm for the range parame-
ter of the pseudo-potential is that in order to pull down
the resonance state efficiently into the bound-state re-
gion, it is useful to make the range parameter of the
pseudo-potential larger than the range of the attractive
part of the nuclear force.
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In order to treat the resonance states which are con-
verted to bound states, we solve the following Hill-Wheeler
equation for the ACCC Hamiltonian H ′(δ):

∑

β′

〈
Φ̂J

3α(β)
∣∣∣
(
H ′(δ)− EJ

λ (δ)
)∣∣∣Φ̂J

3α(β
′)
〉
fJλ (β

′, δ) = 0.

(25)
The solution of the above equation is given as a function
of the coupling constant δ as follows:

ΨJ
λ (δ) =

∑

β

fJλ (β, δ)Φ̂
J
3α(β). (26)

Once the resonance state is obtained in the bound-
state region, the energy as a function of δ of the state
in question can be approximated by a Padé approximant
that has the following form:

k[N,M ] = i
c0 + c1x+ c2x

2 + · · ·+ cNx
N

1 + d1x+ d2x2 + · · ·+ dMxM
, (27)

E(δ)− Eth
3α(δ) = k2

[N,M ]. (28)

Here x =
√
δ − δ0, and the constant δ0 satisfies the re-

lation, E(δ0) = Eth
3α(δ0) = 3Eα(δ0). Eα(δ) is the bind-

ing energy of an alpha particle as a function of δ. We
can determine the coefficients of the Padé approximant
of the right-hand side in eq. (27) using the values of the
binding energy derived from the Hill-Wheeler equation,
eq. (25). While the energy function, k2[N,M ], determined
with the help of the Padé approximation only has a real
part in the bound-state region below the 3α threshold,
it takes complex numbers above the 3α threshold, where
the binding energy and the total width will be given as
Re(E(δ) − Eth

3α(δ)) and −2 · Im(E(δ) − Eth
3α(δ)), respec-

tively. We can extrapolate the energy function in δ back
to the physical point, δ = 0, to reach the desired binding
energy and width.

The numerical accuracy of the binding energy which
we obtain by the GCM calculation is approximately seven
significant digits, namely the precision of several tens of
eV since the binding energy is around 80 MeV. The deter-
mination of the coefficients ci and di of the Padé approx-
imant is made by using E(δ)− Eth

3α which is of the order
of 10−1 MeV–1 MeV. Therefore, due to this subtraction
of E(δ) − Eth

3α, the numerical accuracy of the coefficients
ci and di is lower than that of the GCM binding energy
and it attains approximately four significant digits. If the
width of a resonance is much smaller than the energy of
the resonance by more than four orders of magnitude as
this is the case for the 0+

2 state whose energy and width
are about 0.4 MeV and about 9×10−6 MeV, respectively,
we cannot calculate the width of the resonance with the
ACCC method because of lack of numerical accuracy.

However, we can devise an approximate method to
calculate such small widths within the framework of the
ACCC method by using a region of negative values of δ
where we can safely calculate the resonance width Γ (δ).
With the condition that the width be calculated with good
numerical accuracy, we choose a negative δ, δ = δz < 0,

whose magnitude |δz| is as small as possible. According
to the R-matrix theory [18], the decay width Γ (δ) is ex-
pressed as

Γ (δ) = 2Pl(ε(δ)) · γ2(δ),

Pl(ε) =
ρ

F 2
l (ρ) +G2

l (ρ)
, ρ = a

√
2µ

~2
ε, (29)

where Pl is the penetrability of the 8Be(0+) + α decay
channel with partial wave l, µ being the reduced mass
of 8Be and α, and a the channel radius. Here ε(δ) is the
decay energy, ε(δ) = E(δ) − EJ=0

2α (δ), where EJ=0
2α (δ) is

the binding energy of 8Be(0+), and Fl and Gl are regular
and irregular Coulomb functions, respectively. From this
formula we obtain

Γ (δ = 0) ≈ Pl(ε̄)

Pl(ε(δz))
Γ (δz) (30)

under the approximation γ2(δ = 0) ≈ γ2(δz). Here, ε̄ is
the observed decay energy into the 8Be(0+) + α decay
channel.

2.6 Microscopic Hamiltonian

The microscopic Hamiltonian is expressed as

H = T − TG + VN + VC. (31)

Here T denotes the kinetic energy, TG the total center-
of-mass kinetic energy, and VC the Coulomb interaction
between protons. These quantities are given by

T =

12∑

i=1

−~2

2m

( ∂

∂ri

)2

,

TG =
−~2

24m

( ∂

∂XG

)2

,

VC =
1

2

12∑

i6=j

1− τzi
2

1− τzj
2

e2

rij
. (32)

VN denotes the effective two-body nuclear interaction. In
this paper, the Volkov No. 1 force with the value of Ma-
jorana parameter M = 0.575 [19] used by Uegaki et al.

and the Volkov No. 2 force with M = 0.59 [19] used by
Kamimura et al. are adopted, which are expressed in the
following formula:

VN =
1

2

12∑

i6=j

{(1−M)−MPσPτ}ij
2∑

n=1

vn exp

(
−
r2ij
a2
n

)
.

(33)

3 Results

3.1 GCM study of the ground-band states and the 0
+

2

state

In our previous paper of ref. [7], we concluded that the
0+
2 state of 12C has Bose-condensate character where
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the three alpha particles occupy the same center-of-mass
S-state. Here we give some more detailed analyses to re-
inforce this conclusion.

In ref. [7], we analysed the microscopic 3α calculations
by Uegaki et al. and Kamimura et al. which were per-
formed about a quarter century ago. We then concluded
that the 0+

2 wave functions obtained by them are almost
the same as the 3α Bose-condensed wave functions. We
here briefly recapitulate the essence of our argument in
ref. [7].

In ref. [4], Uegaki et al. adopted the Volkov No. 1 force
with a Majorana parameter, M = 0.575, as effective nu-
clear force, while in ref. [5], Kamimura and co-workers
adopted Volkov No. 2 force with the value, M = 0.59.
Uegaki. et al. and Kamimura and co-workers followed dif-
ferent approaches, but in essence there was no difference
between them since both approaches fully took into ac-
count the degrees of freedom of relative motions between
the constituent alpha particles as well as the Pauli prin-
ciple. In both approaches, the alpha particle with (0s)4

of harmonic-oscillator type was used with a fixed oscilla-
tor size parameter value, b = 1.41 fm for Volkov No. 1 and
b = 1.35 fm for Volkov No. 2. For example, Kamimura and
co-workers adopted the resonating group method (RGM)
where the following equation was solved:

〈
φ3(α)

∣∣(H − E)
∣∣A{χ(s, t)φ3(α)}

〉
= 0. (34)

Here s and t are the Jacobi coordinates of the center-of-
mass motion of three alpha clusters. We can clearly see
that our model wave function, eq. (12), mathematically
corresponds to a specific form of the above complete three-
body wave function A{χ(s, t)φ3(α)}.

Adopting the same nuclear forces as Uegaki et al. and
Kamimura et al., we solved the Hill-Wheeler equation of
eq. (21) for the ground-state band with 0+

1 , 2
+
1 , 4

+
1 , and the

0+
2 state. The eigenenergies and r.m.s. radii of our GCM

calculations are compared with those by Uegaki et al. and
Kamimura et al., respectively, in table 1. The comparison
of the eigenenergies is also shown in fig. 3. Throughout
the 0+

1 , 2
+
1 , 4

+
1 , and 0+

2 states, as well as our binding en-
ergies are almost the same as those obtained by Uegaki
et al., and also by Kamimura and co-workers. Consider-
ing the mini-max theorem of the variational problem and
the fact that the complete 3α model space contains our
model space, we can say that our wave functions of those
states are almost identical with the ones given by Uegaki
et al. and by Kamimura and co-workers for each case of
the adopted nuclear force.

The calculated large root-mean-square radius of the 0+
2

state is quite remarkable. It is 4.44 fm for Volkov No. 1
and 3.83 fm for Volkov No. 2. The root-mean-square radii
of the three states of the ground band are very similar
and show that these states have a compact structure with
normal density and do not have a pronounced three-alpha
cluster structure.

The most important result in ref. [7] is the fact that
the 0+

2 wave function calculated in our GCM approach,
therefore the 0+

2 wave function given by Uegaki et al. or
by Kamimura et al., is almost completely equivalent to the

-10

-5

0

5

10

[MeV]

01

+

21

+

02

+

22

+(a)
03

+

41

+

EXP

01

+

21

+

02

+

22

+

03

+

41

+

42

+

Full 3α

01

+

21

+

02

+

22

+(b)

41

+

GCM

Volkov No. 1

01

+

21

+

02

+

22

+

41

+

Full 3α

01

+

21

+

02

+

22

+(b)
41

+

GCM

Volkov No. 2

Fig. 3. Energy spectra of low-lying positive-parity states of
12C. “Full 3α” for the Volkov force, No. 1 and No. 2, are taken
from [4] and [5], respectively. (a): the 2+

2 state in experiment
comes from ref. [8]. The other observed states are taken from
ref. [10]. (b): GCM + ACCC.

much simpler condensate wave function. In getting this re-
sult, the following steps were taken. At first we calculate
the energy surface after the angular-momentum projec-
tion to Jπ = 0+ and obtained the minimum-energy point
at β0 ≡ (1.5 fm, 1.5 fm) where the minimum energy is cal-
culated as −87.68 MeV for the case of Volkov No. 2 force.
The minimum-energy state is considered to correspond to
the ground state. We then calculated the projection oper-
ator,

P J=0
⊥ (β) = 1−

∣∣Φ̂N,J=0
3α (β)

〉〈
Φ̂N,J=0

3α (β)
∣∣, (35)

at β = β0. Here Φ̂N,J
3α (β) is the normalized state of

Φ̂J
3α(β) as defined in eq. (14). The operator P J=0

⊥ (β0)
creates the functional space orthogonal to the approx-

imate ground state Φ̂J=0
3α (β0). Next we calculated the

energy surface within this functional space spanned by

P J=0
⊥ (β0)Φ̂

J=0
nα (β). The minimum-energy point of this en-

ergy surface was obtained at β = β1 ≡ (5.7 fm, 1.3 fm)
in the case of Volkov No. 2 force. Finally we calcu-

lated the squared overlap |〈ΨJ=0
λ=2 |C1P

J=0
⊥ (β0)Φ̂

J=0
nα (β1)〉|2

with C1 standing for the normalization constant of

P J=0
⊥ (β0)Φ̂

J=0
nα (β1) and we found that this quantity is as

large as 0.97. The fact that the 0+
2 state is represented by

a simple state P J=0
⊥ (β0)Φ̂

J=0
nα (β1) naturally leads to the
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Table 1. Comparison of the GCM calculation solving the Hill-Wheeler equation, eq. (21), with the full 3α calculation [4,5]
with respect to the binding energy, E, and r.m.s. radius, Rr.m.s.. The comparison is made for the 0+

1 , 2
+
1 , 4

+
1 , and 0+

2 states for
two cases of the effective two-nucleon force. The r.m.s. radii of ref. [4] which was cited in our previous paper [7] were the charge

radii containing the proton size
√
〈r2〉p = 0.813 fm. Here we cite the values without proton size effect, which can be directly

compared with our r.m.s. radii. Note that for the 4+
1 state, the spurious components of continuum states are subtracted by the

method discussed in sect. 3.3.

Volkov No.1 M = 0.575, Eth
3α = −81.01 MeV Volkov No.2 M = 0.59, Eth

3α = −82.04 MeV

GCM calculation Full 3α calculation [4] GCM calculation Full 3α calculation [5]

Jπ E (MeV) Rr.m.s. (fm) E (MeV) Rr.m.s. (fm) E (MeV) Rr.m.s. (fm) E (MeV) Rr.m.s. (fm)

0+
1 −87.81 2.40 −87.9 2.40 −89.52 2.40 −89.4 2.40

2+
1 −85.34 2.38 −85.7 2.36 −86.71 2.38 −86.7 2.38

4+
1 −79.87 2.30 −80.4 2.29 −80.30 2.31 −80.0 2.31

0+
2 −79.97 4.44 −79.3 3.40 −81.79 3.83 −81.7 3.47

Table 2. Expectation values of kinetic energy, nucleon-nucleon interaction energy, and Coulomb interaction energy of the
relative motions between α-particles, denoted as T − TG, VN , and VC, respectively. Internal contributions of the α-particle are
subtracted. Calculation is made for the 0+

1 , 2
+
1 , 4

+
1 , and 0+

2 states for two cases of the effective two-nucleon force. Note that
for the 4+

1 state, the spurious components of continuum states are subtracted by the method discussed in sect. 3.3. Units are
in MeV.

Volkov No.1 M = 0.575, Eth
3α = −81.01 MeV Volkov No.2 M = 0.59, Eth

3α = −82.04 MeV

Jπ 〈T − TG〉 〈VN 〉 〈VC〉 E − Eth
3α 〈T − TG〉 〈VN 〉 〈VC〉 E − Eth

3α

0+
1 56.4 −68.8 5.54 −6.81 51.2 −64.2 5.48 −7.47

2+
1 60.7 −70.6 5.62 −4.32 55.6 −65.8 5.55 −4.65

4+
1 71.9 −76.6 5.82 1.14 68.2 −72.2 5.77 1.74

0+
2 13.8 −15.9 3.23 1.04 17.6 −20.9 3.58 0.26

correctness of our picture that the 0+
2 state is considered

to be a Bose-condensed state composed of 3α particles.

On the other hand, we here analyse the wave function
of the 0+

2 state, ΨJ=0
λ=2 by simply calculating the squared

overlap, |〈Φ̂N,J=0
3α (β)|ΨJ=0

λ=2 〉|2, in the parameter space, β.
We show the contour map in fig. 4. These quantities in-
dicate how much the 0+

2 wave function can be repre-
sented by a single condensed wave function with good
angular momentum 0+. The maximum value amounts
to 0.82 at β = β2 ≡ (6.5 fm, 1.5 fm) for the case of
Volkov No. 2 force. The same calculation gives 0.88 at
β = β3 ≡ (7.5 fm, 1.5 fm) for Volkov No. 1 force. This
should be compared with the fact that the maximum
squared overlap between the 0+

2 wave function obtained
by Uegaki et al. [3] and Brink’s 0+ wave function with
a single three-alpha configuration was at most 0.5. This
result gives further support for the interpretation that the
0+
2 state has a gas-like structure where three-alpha parti-

cles are condensed into an indentical S-wave orbit.

We should keep in mind that the wave function

Φ̂J=0
3α (β) of eq. (13) necessarily contains compact compo-

nents like the shell model state even if the size parameter

β is large. Therefore the overlap 〈Φ̂N,J=0
3α (β)|ΨJ=0

λ=2 〉 even
for large β = β2 or β = β3 suffers from the effect of the

compact components contained in Φ̂N,J=0
3α (β) with β = β2

or β3. In order to calculate the overlap of ΨJ=0
λ=2 with the

gas-like state which does not contain the compact com-
ponents, we need to subtract the compact components

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

β z
 [f

m
]

βx=βy [fm]

Squared overlap (02
+ state)

×0.82

0.1
0.2

0.3

0.5

0.6

0.60.7

0.7

0.8

Fig. 4. Contour map of the squared overlap,

|〈Φ̂N,J=0
3α (β)|ΨJ=0

λ=2 〉|
2, in the two-parameter space, βx(= βy)

and βz. Numbers attached to the contour lines are the
squared-overlap values. The adopted effective nucleon force is
Volkov No. 2.

from Φ̂N,J=0
3α (β). The wave function P J=0

⊥ (β0)Φ̂
J=0
3α (β)

is just such a kind of wave function in which compact

components represented by Φ̂J=0
3α (β0) are subtracted. As

we mentioned above, the squared overlap of ΨJ=0
λ=2 with

P J=0
⊥ (β0)Φ̂

J=0
3α (β) can become as large as 0.97.
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2 states
which are the expectation values of the density operator de-
fined in eq. (36). The adopted effective force is Volkov No. 2.

We now discuss the ground-rotational-band states with
Jπ = 0+

1 , 2
+
1 , and 4+

1 . As we mentioned already, the bind-
ing energies of the ground-rotational-band states by our
GCM are in good agreement with those by Uegaki et al.

and Kamimura et al., and therefore our GCM wave func-
tions of these states are almost identical to their wave
functions. It is not unnatural that our GCM wave func-
tions could well represent these states, if we consider the
fact that the normalized wave function of eq. (12) goes to
a shell model Slater determinant when βx = βy = βz → 0.
However, these states have a quite different structure from
that of the 0+

2 state and cannot be considered to form a
dilute 3α cluster structure.

In table 2, we give the kinetic energy, nucleon-nucleon
interaction energy, and Coulomb interaction energy for
each of the 0+

1 , 2
+
1 , 4

+
1 , and 0+

2 states. We should note that
the internal contributions of the alpha particles are sub-
tracted. Kamimura et al. calculated the kinetic energy for
each of the 0+

1 , 2
+
1 , and 0+

2 states in ref. [3], and our result
well agrees with theirs. We see that for the 0+

2 state, the
kinetic and nucleon-nucleon interaction energies are much
smaller, compared with the case of the ground rotational
band composed of the 0+

1 , 2
+
1 , and 4+

1 states. The Coulomb
interaction energy of the 0+

2 state is smaller than those of
the ground-rotational-band states. These results are well
understood by the fact that the 0+

2 state has a strongly
developed 3α cluster structure with low density where the
inter-alpha binding is small. Simultaneously, it is indicated
that the ground-rotational-band states have a compact
structure with normal density, as is clearly shown by cor-
respondingly small values of r.m.s. radii of these states.

In fig. 5, we show the density distribution which is the
expectation values of density operator defined as

ρ̂(a) =
1

A

A∑

i=1

δ(|ri −XG| − a). (36)

A brief explanation of how to derive the expectation values
of the above density operator will be given in appendix A.

Obviously, the wave function of the 0+
2 state leads to a

low-density structure with a long tail, while the states of
the ground-rotational-band have compact structures with
all almost the same density distribution. This result pro-
vides a strong support to the idea that the 0+

2 state can
be described as a dilute-density state forming a gas-like
structure composed of three-alpha particles, as character-
ized by the wave function, eq. (12). On the contrary, the
ground-rotational-band states with Jπ = 0+

1 , 2
+
1 , and 4+

1
have a quantitatively different structure from the one of
the 0+

2 state. Hence even though these states could be well
represented by our GCM wave functions, they could never
be described in terms of a Bose condensation composed of
three-alpha particles.

The ground-band spectrum obtained by us as well as
those by Uegaki et al. [4] and by Kamimura et al. [5] are
quite compressed in comparison with experiment. This is
a well-known problem of microscopic cluster model cal-
culations. Takigawa and Arima [20] showed that the ef-
fect of the spin-orbit force taken into account by broken-
symmetry states with [4431], [4422], and so on, introduced
into the model space in addition to the cluster model
states with maximum spatial symmetry [444], can largely
remedy this shortcoming of the cluster model. The pairing
correlations may also have to be considered.

3.2 ACCC study of 2
+

2 , 4
+

2 and 0
+

2

The 2+
2 state is located at 2.6 ± 0.3 MeV above the

3α threshold with the α decay width 1.0 ± 0.3 MeV.
Therefore, the bound-state approximation used for the
0+
2 state, which is only 0.38 MeV above the 3α threshold,

is no more useful for the 2+
2 state. This situation is shown

in figs. 6(a), (b).
In fig. 6(a), we give the contour map of the energy

surface for the 2+ states in the parameter space, β.
We obtained the minimum-energy point at β = βD

0 ≡
(1.5 fm, 0.35 fm). The optimum wave function is written

as Φ̂J=2
3α (βD

0 ), which corresponds to the 2+
1 state, since

the binding energy, −84.65 MeV is similar to the correct
binding energy of the 2+

1 state, −86.70 MeV, as indicated
in table 1. In order to look for the 2+

2 state, we define a
projection operator

P J=2
⊥ (βD

0 ) = 1−
∣∣Φ̂N,J=2

3α (βD
0 )
〉〈
Φ̂N,J=2

3α (βD
0 )
∣∣. (37)

Using this, we calculated the 2+ energy surface of the or-

thogonalized states, P J=2
⊥ (βD

0 )Φ̂J=2
3α (β), to the minimum-

energy state. The contour map is shown in fig. 6(b). There
appears no minimum point in this map. This is because
the 2+

2 state lies close to the top of the Coulomb and
centrifugal barriers. This situation of the 2+

2 state is in
marked contrast to that of the 0+

2 state for which, as shown
in ref. [7], we could see a clear minimum point in the con-
tour map of the energy surface for the 0+ states calculated
in this way. This is because the 0+

2 state lies well below
the top of the Coulomb barrier. Therefore, the 2+

2 state
has to be correctly treated as a resonance state.



Y. Funaki et al.: Resonance states in 12C and α-particle condensation 331

0

2

4

6

8

10

0 2 4 6 8 10

β z
 [f

m
]

βx=βy [fm]

Energy surface (21
+ state)

×−84.65 MeV
−82 −81

−80

−79

−80−77

(a)

0

2

4

6

8

10

0 2 4 6 8 10

β z
 [f

m
]

βx=βy [fm]

Energy surface (22
+ state)

−77 −78
−79

−80

(b)

Fig. 6. (a): contour map of the energy surface of the 2+ state
in the two-parameter space, βx(= βy) and βz. (b): contour map
of the energy surface corresponding to the 2+ state orthogo-
nalized to the state at the minimum-energy point in fig. 6(a).
In both figures, the adopted effective nucleon force is Volkov
No. 2, and numbers attached to the contour lines are binding
energy values given in units of MeV.

In figs. 7(a)-(c), we plot the energy eigenvalues of the
ACCC Hamiltonian H ′ of eq. (23) obtained by solving the
Hill-Wheeler equation, eq. (25), for Jπ = 0+, 2+, and 4+.
The solutions of the above equation of motion depend on
the coupling constant, δ, and the energy eigenvalues are
plotted as a function of δ. It is seen that resonance solu-
tions dive under the line of the 3α threshold, E = 0, as
δ increases. On the other hand, the continuum solutions,
which are insensitive to variations of δ and look just like
horizontal straight lines on the figures, stay above the line
of the 3α threshold. This is how resonance states can be
separated from continuum states. It is to be noted that
around δ = 0, an undesirable mixing of resonance and
continuum states occurs, since the Hill-Wheeler equation,
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Fig. 7. The energy eigenvalues of the Hill-Wheeler equation,
eq. (25), plotted as a function of the coupling constant, δ.
(a): for Jπ = 0+. (b): for Jπ = 2+. (c): for Jπ = 4+. The
adopted effective nucleon force is Volkov No. 2 for all cases.

eq. (25), has not been solved with proper boundary con-
ditions. Therefore, the correct resonance states cannot be
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Fig. 8. (a): analytically continued complex energy functions
for the 2+

2 state are drawn by superposing them to fig. 7(b).
Note that k2

[7,7] and k
2
[8,8] are converged, so that their trajecto-

ries can be hardly distinguished from one another in this fig-
ure. (b): analytically continued complex energy functions for
the 4+

2 state are drawn by superposing them to fig. 7(c). Note
that k2

[6,6] and k2
[7,7] are converged, so that their trajectories

can be hardly distinguished from one another in this figure.

clearly identified. As characteristic features of these fig-
ures, the trajectory of the 0+

2 state as well as of the 4+
1

state can be clearly traced, even when the coupling con-
stant, δ, decreases to zero, while the trajectories of the
other resonance states, for instance, that of the 0+

3 state,
get obscure when δ becomes less than about 0.01. As a
result, the 0+

3 state cannot be distinguished from a few
neighboring states at δ = 0. It follows that it is a very good
approximation to solve the 0+

2 state within the framework
of the bound-state approximation as practiced in the pre-
vious subsection, while for the 2+

2 , 0
+
3 , and 4+

2 states with
non-negligible widths, it is necessary to go beyond the
framework of the bound-state approximation. In order to
solve those resonance states, the method of ACCC is ap-
plied here.

In figs. 8(a), (b), we show the converged complex
energy functions for the 2+

2 and 4+
2 states. The energy

functions of resonance states have the form of eqs. (27)
and (28). As already mentioned in sect. 2.5, once the co-
efficients of the Padé rational function are determined by
the use of the calculated energy eigenvalues underneath
the 3α threshold, the position and total decay width can
be derived by extrapolating the complex energy functions
of the coupling constant, δ, to δ = 0. For the 2+

2 , and 4+
2

states, we made use of an energy region down to about
3 MeV starting from several tens of keV below the 3α
threshold in order to determine the coefficients of the
Padé approximant.

In figs. 8(a), (b), the calculated stable trajectories
for a few kinds of Padé approximants labeled as [N,M ]
(N = M) defined in eq. (27), are drawn by superposing
them on figs. 7(b), (c), respectively. We see that the real
parts of all calculated trajectories retrace, even above the
threshold, the trajectories in figs. 7(b), (c). It seems that
we need to adopt the Padé approximant of N =M ≥ 6 for
these states in order to correctly retrace the real parts of
the complex energy functions, especially above the thresh-
old, the energy eigenvalues obtained by the bound-state
approximation. On the other hand, we applied the Padé
approximations of N = M ≥ 9 to the 2+

2 state, and N =
M ≥ 8 to the 4+

2 state, but we did not adopt the results of
these applications because they appear to be ill-behaved
or divergent. It should be noted that the two kinds of ana-
lytically continued Padé approximants of different N =M
values for each state in figs. 8(a), (b) almost coincide so
that we can hardly distinguish them from one another.

For the 2+
2 state, fig. 8(a) shows the energy position,

Re(E(δ = 0)− Eth
3α(δ = 0)) = 1.55 MeV, and total decay

width, Γ = −2 · Im(E(δ = 0)− Eth
3α(δ = 0)) = 0.09 MeV,

when the Volkov No. 2 force is adopted. The calculated
binding energy, 1.55 MeV, is quite a bit smaller than
the observed value, 2.6 ± 0.3 MeV. According to the
lower binding energy which makes the decay penetrability
smaller, the total decay width is also much smaller, i.e.

0.09 MeV, than the observed value, 1.0± 0.3 MeV. When
we adopt the Volkov No. 1 force, the energy position is
calculated as Re(E(δ = 0)− Eth

3α(δ = 0)) = 2.1 MeV. Ac-
cording to the higher-energy position, the calculated total
decay width is larger than the one of the Volkov No. 2 case
and is Γ = −2 · Im(E(δ = 0)− Eth

3α(δ = 0)) = 0.64 MeV,
which quite well reproduces the experimental data. The
sensitive dependence of the penetrability on the energy
position can be seen by adjusting the value of δ and by
making the whole system a little less bound, so that the
real part of the energy function takes a reasonable value.
When δ = −0.0035, the real part of the energy function,
Re(E[8,8](δ = −0.0035) − Eth

3α(δ = −0.0035)) = 2.0 MeV,
and Γ = 0.61 MeV. At this value of δ, the threshold en-
ergy of 8Be + α turns to be 0.172 keV measured from
the three-alpha threshold energy, though at δ = 0 the
8Be+α threshold energy is −0.244 MeV. When we adopt
the Volkov No. 1 force, the threshold energy of 8Be + α
at δ = 0 is 0.191 MeV measured from the three-alpha
breakup threshold energy. Consequently, we can say that
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for both effective nucleon forces, the resonance energy and
width of the 2+

2 state are mutually consistent and in good
agreement with the recently observed experimental data.

There is another way to adjust the present unrealistic
penetrability in the case of the Volkov No. 2 force to a
more reasonable value. It consists in using the R-matrix
theory in which the decay width is expressed as Γ =
2Pl · γ2, as given in eq. (29). From this relation, we can
estimate the total decay width corresponding to the ob-
served energy position of the 2+

2 state, 2.5±0.3 MeV above
the 8Be+α breakup threshold energy which is 0.092 MeV
above the three-alpha breakup threshold. The estimation
is made through the following relation:

Γ ′ =
Pl(ε̄)

Pl(ε(δ = 0))
Γ (δ = 0). (38)

The calculated total decay width, Γ ′, is 0.24 MeV
when the channel radius a = 6 fm, which is still smaller
than the observed value. It is to be noted that the above
expression of penetrability is an approximate one and only
applicable to the case of a narrow resonance width. Since
the observed width of the 2+

2 state which is 1.0±0.3 MeV,
is no longer narrow, the use of this expression of penetra-
bility may lead to an unsatisfactory result.

In the present work, we do not argue about the 2+
3 and

2+
4 states which are shown in fig. 7(b). A recent experiment

assigns a 2+ state at the excitation energy, ∼ 14 MeV with
the width, ∼ 1 MeV in the preliminary analysis [21]. The-
oretical predictions that a 2+ state exsists in this energy
region with the width ∼ 1 MeV are also reported [22,23].

In sect. 2.5, we devised an approximate method to cal-
culate the width which is much smaller than the energy
measured from the threshold within the framework of the
ACCC method. We calculated the width of the 0+

2 state
by using eq. (30), Γ (δ = 0) ≈ (Pl=0(ε̄)/Pl=0(ε(δz)))Γ (δz),
where the observed decay energy ε̄ = 0.288 MeV. When
δz = −0.0035, the calculated width Γ (δ = 0) ≈
7.0 × 10−6 MeV, where the decay energy and width are
ε(δz) = 0.643 MeV and Γ (δz) = 0.012 MeV, respectively.
When δz = −0.005, the calculated width Γ (δ = 0) ≈
9.9×10−6 MeV, where the decay energy and width are
ε(δz) = 0.790 MeV and Γ (δz) = 0.064 MeV, respectively.
The adopted channel radius is a = 6 fm in this calcula-
tion. The obtained values are consistent with the observed
width 8.7± 2.7 eV [10].

In fig. 8(b), the energy function of the 4+
2 state using

the Volkov No. 2 force is drawn. The obtained binding
energy measured from the threshold and the total decay
width are 4.5 MeV and 4.6 MeV, respectively. When we
adopt the Volkov No. 1 force, we obtain 5.4 MeV and
4.0 MeV for the energy and the width, respectively. In
the case of the Volkov No. 1 force, Uegaki et al. predicted
in ref. [4] the exsistence of the 4+

2 state that is, however,
experimentally unknown. In spite of the fact that we ob-
tained a unique and stable trajectory for the 4+

2 state for
both of the adopted effective nuclear forces, we, however,
could not make a decisive argument about whether the ob-
tained 4+

2 state possesses a correct physical meaning. The
reason for this will be clarified in the following subsection.

3.3 Analysis of wave functions of the 2
+

2 and 4
+

2 states

We have seen that our wave function of the 2+
2 state rea-

sonably reproduces the observed binding energy and alpha
decay width, with the help of the ACCC method. In this
subsection, we analyse the wave function of the 2+

2 state.
Since the method of ACCC, unfortunately, does not pro-
vide the wave function of the resonance state, we utilize
the GCMwave functions for the ACCC HamiltonianH ′(δ)
in order to estimate the correct 2+

2 wave function.
Figure 7(b) shows that the binding energy of the

2+
2 state coincides with the threshold energy when
δ = 0.00626. Let ΨJ

λ (δ) be a solution, eq. (26), of the Hill-
Wheeler equation, eq. (25). For δ ≤ 0.0062, as long as
we can safely trace the clearly visible trajectory of the
resonance state corresponding to the 2+

2 state shown in
fig. 7(b), we will be able to regard the wave function
ΨJ=2
λ (δ) on the trajectory of the 2+

2 state as consisting
of an almost pure resonance component for the ACCC
Hamiltonian H ′(δ). Below we give arguments for this
conjecture: as already mentioned, the horizontal straight
lines in fig. 7(b) express the trajectories of the continuum
states. We can check this fact by calculating the density
distribution ρ(a) of any state on the continuum-state tra-
jectories, which shows that ρ(a) . 0.05 for a ≤ 10 fm.
The coupling of the resonance state with the continuum
state is the strongest at the point where the resonance-
state trajectory crosses the continuum-state trajectory.
The coupling of the resonance state with the continuum
state becomes weaker as we go away from the crossing
point along the resonance-state trajectory. When we ar-
rive at a point on the resonance-state trajectory where the
effect of the level-level repulsion between the resonance-
state and continuum-state trajectories is no more existent,
we may consider that the mixing of the continuum state
into the resonance state is very small.

In fig. 9 we show the density distributions ρ(a) of four
states on the 2+

2 resonance trajectory, ψI ≡ ΨJ=2
λ=2 (δ =

0.00542), ψII ≡ ΨJ=2
λ=3 (δ = 0.00265), ψIII ≡ ΨJ=2

λ=4 (δ =
0.00165), and ψIV ≡ ΨJ=2

λ=6 (δ = 0). As is seen in fig. 7(b),
the first two states, ψI and ψII, are out of influence of the
crossing with continuum trajectories. However, the last
state, ψIV, seems to contain non-negligible amount of the
continuum-state component, because this state is located
near the crossing point between the 2+

2 trajectory and the
fourth lowest continuum trajectory with large mutual re-
pulsion. In addition, it may be said that the state ψIII has
little mixing with the second and third continuum states,
since the state is closely located between the second and
third crossing points. For the sake of comparison, we also
show in fig. 9 the density distribution of the 0+

2 state which
we already showed in fig. 5. We note that the density dis-
tributions of the first two states, ψI and ψII, are confined
inside a finite spatial region. Actually the integration of
ρ(a)

I(R) =

∫ R

0

ρ(a)da (39)

which should be unity for R =∞, I(R =∞) = 1, becomes
almost unity already for finite R except for the last two
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Fig. 9. Density distributions of the wave functions, ΨJ=2
λ=2

(δ = 0.00542), ΨJ=2
λ=3 (δ = 0.00265), ΨJ=2

λ=4 (δ = 0.00165), and
ΨJ=2
λ=6 (δ = 0), together with that of the 0+

2 state given in
sect. 3.1. The density operator is defined in eq. (36). Volkov
No. 2 force is adopted.

states, ψIII and ψIV. Such finite values of R are 8 fm for
the 0+

2 state and ψI, and 11 fm for ψII. In the cases of ψIII

and ψIV, I(R = 13 fm) = 0.96 and 0.90, respectively, and
ρ(a) is not damped away even beyond a = 15 fm.

The reason for the choice of δ = 0.00542 of the first
state ψI ≡ ΨJ=2

λ=2 (δ = 0.00542) is to make its excitation
energy measured from the 3α threshold, E(δ) − Eth

3α(δ),
be equal to that of the 0+

2 state which is 0.26 MeV for
our present choice of Volkov No. 2 force. We see that the
density distribution of this state, ψI, is almost the same
as that of the 0+

2 state. This result implies that if we pull
down the excitation energy of the 2+

2 state to the same
value as that of the 0+

2 state, the density distribution of
the 2+

2 state becomes almost identical to that of the 0+
2

state. In fig. 10(a), we show the squared overlap between

ψI and the single 2+ condensate wave function Φ̂N,J=2
3α (β),

i.e. |〈Φ̂N,J=2
3α (β)|ψI〉|2. We see that the maximum value of

the squared overlap is more than 90%. Here we should re-
call that in the case of the 0+

2 state the maximum value of
such squared overlap with single 0+ condensate wave func-

tion Φ̂N,J=0
3α (β) amounts to 82% for the Volkov No. 2 force

and to 88% for the Volkov No. 1 force. We further calcu-
lated the squared overlap of ψI with P

J=2
⊥ (βD

0 )Φ̂J=2
3α which

is the projection operator defined in eq. (37). We found
the maximum value to be more than 95%. In the case of
the 0+

2 state, a similar calculation of the squared overlap

with P J=0
⊥ (β0)Φ̂

J=0
nα (β1) gives a value as large as 97%,

where β1 = (5.7 fm, 1.5 fm), as mentioned in sect. 3.1. We
thus can say that the wave function ψI has a very similar
structure as the 0+

2 state of Bose-condensate character.

We see in fig. 9 that the density distribution ρ(a) of
the second state, ψII ≡ ΨJ=2

λ=3 (δ = 0.00265), is slightly
pushed outwards compared with that of ψI, which we
consider to be natural because the excitation energy of
ψII measured from the 3α threshold, E(δ) − Eth

3α(δ), is
1.01 MeV and hence is higher than that of ψI which is
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Fig. 10. (a): contour map of the squared overlap,

|〈Φ̂N,J=2
3α (β)|ΨJ=2

λ=2 (δ = 0.00542)〉|2, in the two-parameter
space, βx(= βy) and βz. (b): Contour map of the squared over-

lap, |〈Φ̂N,J=2
3α (β)|ΨJ=2

λ=6 (δ = 0)〉|2, in the two-parameter space,
βx(= βy) and βz. Volkov No. 2 force is adopted.

0.26 MeV. We also calculated the squared overlap between

ψII and the single 2+ condensate wave function Φ̂N,J=2
3α (β),

|〈Φ̂N,J=2
3α (β)|ψII〉|2, and we found that the maximum value

of the squared overlap is approximately 90%.

In the cases of the third and fourth states, ψIII ≡
ΨJ=2
λ=4 (δIII) with δIII = 0.00165, and ψIV ≡ ΨJ=2

λ=6 (δ = 0),
as we mentioned already, there exist mixings of contin-
uum states into these states. Figure 7(b) tells us that the
continuum states which mix into ψIV seem to be dom-
inantly the fourth lowest continuum state which we de-
note as ϕ4(δ = 0). But there also may be small mixing
of the third and fifth continuum states, ϕ3(δ = 0) and
ϕ5(δ = 0), into ψIV. In the case of the third state, ψIII,
there may be small mixing of the second and third contin-
uum states, ϕ2(δIII) and ϕ3(δIII). Thus, ψIII and ψIV can
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Table 3. Expectation values of kinetic energy, nucleon-nucleon interaction energy, and Coulomb interaction energy of the
relative motions between α-particles, denoted as T − TG, VN , and VC, respectively. Internal contributions of the α-particle are
subtracted. Calculation is made for the 2+

2 state by using Volkov force No. 2 and various values of the coupling constant δ.
When δ = 0, 0.00165, 0.00265, 0.00542, the wave functions, φR(δ = 0), φR(δIII), Ψ

J=2
λ=3 (δ = 0.00265), and ΨJ=2

λ=2 (δ = 0.00542) are
adopted, respectively. Units are in MeV except for Rr.m.s. whose unit is in fm.

Jπ δ 〈T−TG〉 〈VN 〉 〈VC〉 E(δ)−Eth
3α(δ) Eth

3α(δ) Rr.m.s.

0 9.84 −11.1 2.80 1.54 −82.04 5.40
0.00165 12.5 −14.2 3.00 1.23 −83.24 5.39

2+
2 0.00265 15.9 −18.3 3.35 1.01 −83.96 4.32

0.00542 21.3 −24.8 3.72 0.26 −85.96 3.68

0+
2 0 17.6 −20.9 3.58 0.26 −82.04 3.83

be expressed as

ψIII = CIII
1 φR(δIII) + CIII

2 ϕ2(δIII) + CIII
3 ϕ3(δIII),

ψIV = CIV
1 φR(δ = 0) + CIV

2 ϕ4(δ = 0)

+CIV
3 ϕ3(δ = 0) + CIV

4 ϕ5(δ = 0). (40)

Here, φR(δIII) and φR(δ = 0) are just the resonance states
which we want to extract from ψIII and ψIV, respec-
tively. The extraction of these resonance states, φR(δIII)
and φR(δ = 0), can be made in the following way. We
explain the procedure in the case of φR(δ = 0). First
we note that the three eigenenergy states of the GCM,
ΨJ=2
λ=4 (δ = 0), ΨJ=2

λ=5 (δ = 0), and ΨJ=2
λ=7 (δ = 0), which are

the δ = 0 states on the third, fourth, and fifth lowest con-
tinuum trajectories, respectively, and which are marked
by crosses on the δ = 0 vertical dashed line in fig. 11, can
also be expressed by a linear combination of four states,
φR(δ = 0), ϕ4(δ = 0), ϕ3(δ = 0), and ϕ5(δ = 0), just like
ψIV = ΨJ=2

λ=6 (δ = 0). This means that φR(δ = 0) can be ex-
pressed by a linear combination of four GCM eigenstates

φR(δ = 0) =

7∑

λ=4

DIV
λ ΨJ=2

λ (δ = 0). (41)

Since the r.m.s. radius of φR(δ = 0) should be much
smaller than the r.m.s. radius of any of the three con-
tinuum states, ϕ4(δ = 0), ϕ3(δ = 0), and ϕ5(δ = 0), the
coefficients {DIV

λ } of the above equation should satisfy
that the expression

〈
7∑

λ=4

DIV
λ ΨJ=2

λ (δ = 0)

∣∣∣∣∣∣

12∑

j=1

r2j

∣∣∣∣∣∣

7∑

λ=4

DIV
λ ΨJ=2

λ (δ = 0)

〉

(42)

takes the smallest value possible. This condition de-
termines the coefficients {DIV

λ } and hence φR(δ = 0).
Similarly, we can extract the resonance state φR(δIII)
by linearly combining the GCM eigenstates, ΨJ=2

λ=3 (δIII),
ψIII = ΨJ=2

λ=4 (δIII), and Ψ
J=2
λ=5 (δIII). The calculated squared

overlap, |〈φR(δ = 0)|ψIV〉|2 = |CIV
1 |2 = |DIV

λ=6|2 and
|〈φR(δIII)|ψIII〉|2 = |CIII

1 |2 = |DIII
λ=4|2, is 0.811 and 0.967,

respectively. This means that the degrees of mixing of
continuum states into ψIV and ψIII are around 19% and
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Fig. 11. The energy eigenvalues for Jπ = 2+ of the Hill-
Wheeler equation, eq. (25), plotted as a function of the cou-
pling constant, δ. ΨJ=2

λ=4 (δ = 0), ΨJ=2
λ=5 (δ = 0), and ΨJ=2

λ=7 (δ = 0)
are marked by crosses in order from the bottom, and ΨJ=2

λ=3 (δIII)
and ΨJ=2

λ=5 (δIII) by open circles. Volkov No. 2 force is adopted.

3%, respectively. We have checked by using this technique
that the two states, ψII and ψI, are never influenced by
their neighboring crossing points.

In table 3 we show various properties of the four res-
onance wave functions along the 2+

2 trajectory, ψI, ψII,
φR(δIII), and φR(δ = 0). We have checked that the ener-
gies of these four resonance states (namely the expectation
values of the Hamiltonian H ′(δ) by these four resonance
states) measured from the 3α threshold, E(δ)−Eth

3α(δ), lie
almost completely on the curve of the ACCC real energy
for the 2+

2 state given in fig. 8(a). This result shows the
high reliability of our extracted resonance wave functions
of φR(δIII), and φR(δ = 0). We see that the r.m.s. radius
of the resonance state becomes larger as the excitation
energy measured from the 3α threshold becomes higher
from ψI to φR(δ = 0).

The resonance state φR(δ = 0) is our approximate
wave function of the 2+

2 state. Since the excitation energy
of this state measured from the 3α threshold is quite a bit
higher than that of the 0+

2 state, its r.m.s. radius is much
larger than that of the 0+

2 state unlike for the case of ψI.
However, this state preserves the same character as the ψI

state that has a very similar structure to the 0+
2 state of
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Fig. 12. Contour map of the squared overlap,
|〈Φ̂N,J=4

3α (β)|ΨJ=4
λ=2 (δ = 0.015)〉|2, in the two-parameter

space, βx(= βy) and βz. Volkov No. 2 force is adopted.

Bose-condensate character. It is shown in fig. 10(b) where
there is displayed the squared overlap between φR(δ = 0)

and the single 2+ condensate wave function Φ̂N,J=2
3α (β),

namely |〈Φ̂N,J=2
3α (β)|φR(δ = 0〉|2. We see that the maxi-

mum value of the squared overlap is more than 88%. We
further calculated the squared overlap of φR(δ = 0) with

P J=2
⊥ (βD

0 )Φ̂J=2
3α which is the projection operator defined

in eq. (37). The maximum value is more than 90%.

The fact that the r.m.s. radius of the calculated 2+
2

state has the extraordinary large value of 5.40 fm deserves
special attention. It means that this state has about ten
times the volume of the 12C ground state. One may, there-
fore, consider it as an “alpha-halo state”. As we men-
tioned in sect. 2.4, we will show in our next paper that
our 2+

2 wave function is very similar to that of ref. [5] by
Kamimura.

Finally we study the 4+
2 state obtained in the previous

subsection. We estimate the 4+
2 wave function by using

the energy eigenfunctions on the 4+
2 trajectory shown in

fig. 7(c), as was done for the 2+
2 state. Figure 12 shows the

squared overlap, |〈Φ̂N,J=4
3α (β)|ΨJ=4

λ=2 (δ = 0.015)〉|2. In spite
of the fact that fig. 7(c) shows that the energy eigenfunc-
tion, ΨJ=4

λ=2 (δ = 0.015) is sufficiently far from the nearest
crossing point with the continuum state, the calculated
squared overlap never has any non-negligible amplitudes
in the inner interaction region. The root-mean-square ra-
dius of this state is 19.9 fm, and this state can hardly
be regarded as a physical resonance state. If we make the
coupling constant δ smaller than this value of 0.015, go-
ing towards δ = 0, the wave function on this 4+

2 trajec-
tory will have a larger radius than this unphysical value
of 19.9 fm. That is why we hesitate to suppose that the
obtained energy position and width of the 4+

2 state rea-
sonably correspond to a physical situation, although the
obtained energy position for the effective nucleon force,
Volkov No. 1, is comparable with the one by Uegaki et al.
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Fig. 13. Analytically continued complex energy functions for
the 0+

3 and 0+
4 states are drawn by superposing them to

fig. 7(a). (A) is the analytically continued complex energy func-
tion for the 0+

3 state, and (B) for the 0+
4 state. Note that

k2
[6,6] and k2

[7,7] for the 0+
3 state and k2

[6,6] and k2
[7,7] for the

0+
4 state are converged, so that the two trajectories in each

case of the 0+
3 and 0+

4 states are hardly distinguishable in this
figure. Volkov No. 2 force is adopted.

3.4 The 0
+

3 and 0
+

4 states

As we see in figs. 7(a)-(c) shown in the previous sec-
tion 3.2, it turns out that there exist several resonance
states going under the threshold as δ increases. For the
0+ and 2+ states we see three resonance states and for
the 4+ state we see two states, up to δ = 0.02. For the 0+

state, the 0+
3 and 0+

4 trajectories seem to cross mutually
in the region with δ smaller than 0.01. In fig. 13 we show
the complex energy functions analytically continued for
both 0+

3 and 0+
4 states in the case of Volkov No. 2 force.

Throughout this subsection we will refer to analytically
continued energy functions of the 0+

3 and 0+
4 states as (A)

and (B), respectively.
We see that the trajectories of the real parts of (A)

and (B) cross each other around δ = 0.002 before reach-
ing δ = 0. And we also see that the trajectory of the
real part of (A) is not straight but quite distorted in
the region, 0.003 ≤ δ ≤ 0.006. This unexpected situa-
tion of the crossing of two lines might cause the distor-
tion for the trajectory of the real part of (A). For (A),
Re(k2

[7,7](δ = 0)) = 4.8 MeV and Γ = −2Im(k2
[7,7](δ =

0)) = 9.2 MeV, and for (B), Re(k2
[8,8](δ = 0)) = 1.9 MeV

and Γ = −2Im(k2
[8,8](δ = 0)) = 0.36 MeV. This kind

of situation including the non-straight shape of the real
part of (A) and the crossing of the real parts of (A)
and (B) similarly occurs in the case of the Volkov force
No. 1. In this case, the complex energy function corre-
sponding to (A) gives Re(k2

[9,9](δ = 0)) = 6.9 MeV and

Γ = −2Im(k2
[9,9](δ = 0)) = 6.2 MeV. Both k2

[7,7](δ) and

k2
[8,8](δ) give almost the same trajectory as k2

[9,9](δ) in a

sufficiently wide energy region. And the complex energy
function corresponding to (B) gives Re(k2

[8,8](δ = 0)) =

1.8 MeV and Γ = −2Im(k2
[8,8](δ = 0)) = 0.4 MeV. Again
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both k2
[6,6](δ) and k

2
[7,7](δ) give almost the same trajectory

as k2
[8,8](δ) in a sufficiently wide energy region. In order

to determine the coefficients of all these Padé approxi-
mants, we adopted the energy region from several tens of
keV to around 3 MeV below the 3α threshold. Since the
observed binding energy measured from the 3α threshold
and total decay width of the 0+

3 state are 3.0 MeV and
3.0 ± 0.7 MeV, respectively, neither (A) nor (B) reason-
ably explains the experimental data.

We wonder if the ACCC method where the analytic
continuation is made using the Padé approximant works
well in the case where this kind of crossing occurs. Also the
distortion of the trajectory of the real part of (A) makes
us feel doubtful whether (A) describes the resonance rea-
sonably well.

In sect. 1, we referred to refs. [11] and [12] in which the
density distribution of the intrinsic state of the 0+

3 state
is reported to have linear-chain–like configuration of 3α’s.
If this result is reasonable, our present approach in which
strongly prolate deformations with βx = βy < 0.5 fm and
βz > 3.0 fm are not included in the GCM calculation may
not be suited for the description of the 0+

3 state. However
it is not clear at all whether this possible inappropriateness
of our approach is related or not to the crossing problem
of the ACCC trajectories or the distorted shape of the
ACCC trajectory of energy functions. Further studies are
necessary to clear up the situation.

4 Discussion

4.1 Angular-momentum component in the intrinsic
wave function

Almost all of the studies of this paper are based on
the wave function with good angular-momentum quan-
tum number, eq. (13), which is projected out of the de-
formed intrinsic wave function, eq. (12). The deformed

wave function, Φ̂3α(β), is characterized as forming a
gas-like 3α cluster structure. However, in order to be
able to impose the same character as the intrinsic wave
function on the angular-momentum–projected wave func-
tion, it is necessary that the projected wave function
is contained in the intrinsic wave function with a non-
negligible amplitude. We define Φ̂N

3α(β) as a normalized
wave function of eq. (12). For Jπ = 0+ and 2+, we cal-
culated the magnitude of the squared overlap amplitude,

|〈Φ̂N,J
3α (β)|Φ̂N

3α(β)〉|2, where Φ̂N,J
3α (β) is given in eq. (14).

The contour maps are shown in figs. 14(a) and (b) for
Jπ = 0+ and 2+, respectively. The harmonic-oscillator
size parameter, b = 1.35 fm is adopted. Even for the 2+

state, a non-negligible amplitude can be seen in both pro-
late and oblate deformed regions.

4.2 Correlation between the 0
+

2 and 0
+

1 states

As already mentioned, the fact that the 0+
2 state has a

dramatically different structure from the shell-model–like
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Fig. 14. (a): contour map of the squared amplitude,

|〈Φ̂N,J=0
3α (β)|Φ̂N

3α(β)〉|
2 in the two-parameter space, βx(= βy)

and βz. (b): contour map of the squared amplitude,

|〈Φ̂N,J=2
3α (β)|Φ̂N

3α(β)〉|
2 in the two-parameter space, βx(= βy)

and βz. Harmonic-oscillator size parameter b = 1.35 fm is used
in both figures.

structure of the 0+
1 state was revealed by the works made

about a quarter century ago [4–6]. There, the cluster struc-
ture of the 0+

2 state was characterized by the feature that
the wave function has a large amplitude in the outer re-
gion, while the amplitude in the inner region is suppressed.
The formation of the clustering structure of the 0+

2 state
was attributed to the orthogonality to the 0+

1 wave func-
tion that has a compact structure, therefore, a large am-
plitude in the inner region. If this interpretation of the
appearance of the cluster structure of the 0+

2 state is cor-
rect, the structure of the 0+

2 state would not be affected
by the detailed structure of the 0+

1 state if only the 0+
1

state has a compact structure.
In this subsection, we show quantitatively that the

detailed structure of the 0+
1 state does not affect the
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structure of the 0+
2 state that is orthogonal to the 0+

1
state. In fig. 1 of ref. [7], we have shown the contour map
of the energy surface of the 0+ state in the two-parameter
space, βx(= βy) and βz, obtained by adopting the Volkov
No. 2 force, which showed the minimum-energy state at
βx(= βy) = 1.5 fm, βz = 1.5 fm, i.e. β0 ≡ (1.5 fm, 1.5 fm).
The obtained minimum energy was −87.68 MeV, which
was considered to correspond to the approximate binding
energy of the 0+

1 state. In the reference paper, we fur-
ther introduced the projection operator, P J=0

⊥ (β0) which
is shown in eq. (35) of this paper, and then looked for the
minimum-energy state for the 0+ state in the orthogonal-

ized space, P J=0
⊥ (β0)Φ̂

J=0
3α (β). The minimum-energy state

was obtained at βx(= βy) = 5.7 fm and βz = 1.3 fm, and
the minimum energy was −81.55 MeV, which was consid-
ered to correspond to the approximate binding energy of
the 0+

2 state.

In order to study the sensitivity of the 0+
2 state

on the 0+
1 structure quantitatively, we introduce β′

0 ≡
(1.0 fm, 2.0 fm) and calculate the energy surface using

the orthogonalized wave function P J=0
⊥ (β′

0)Φ̂
J=0
3α (β). The

binding energy of the wave function, Φ̂J=0
3α (β′

0) is calcu-
lated as −85.96 MeV, using the Volkov force, No. 2, which
is higher by 1.72 MeV than the value corresponding to

Φ̂J=0
3α (β0).

Figure 15 is the contour map of the energy surface cor-
responding to the 0+ state, in the orthogonalized space,

P J=0
⊥ (β′

0)Φ̂
J=0
3α (β). We can see that there appears the

minimum-energy point at βx = βy = 6.2 fm, βz = 1.4 fm
with the minimum energy −81.41 MeV and the qualita-
tive feature is quite similar to fig. 2 of ref. [7]. In spite

of the fact that the binding energy given by Φ̂J=0
3α (β′

0) is

higher than the value given by Φ̂J=0
3α (β0) by 1.72 MeV, the

minimum energy and the minimum position in fig. 15, are
almost unchanged compared with those calculated using

P J=0
⊥ (β0)Φ̂

J=0
3α (β). This result is consistent with the argu-

ment qualitatively made by the previous works referred to
above, and further assures that the 0+

2 state could be sep-
arated from the 0+

1 state and treated independently under
the condition that the state cannot become compact like
the 0+

1 state.

4.3 Dominance of the spherical component in the
condensate wave function

If our GCM wave function of the 0+
2 state, ΨJ=0

λ=2 is ex-
tended to a deformed type of the α condensate, one may
ask the question: how important is this effect with respect
to the spherical case?

The discussion of sect. 2.3 teaches us that the deformed
condensate wave function, after angular-momentum pro-
jection, necessarily contains a large amount of the spheri-
cal condensate component. Actually we showed that after
the projection onto the Jπ = 0+ state, both prolate and
oblate condensate wave functions take the form of eq. (19)
for the leading term which is nothing but the spherical
condensate wave function.

In order to check the above argument quantitatively,
we investigated the magnitude of the spherical conden-
sate component which incorporates ΨJ=0

λ=2 . Let Vsph and
Wdef be the functional spaces spanned by spherical and
by deformed condensate wave functions, respectively; let
Vsph ⊆ Wdef , and ⊥Vsph be the orthogonal functional
space to Vsph. The projection operator Psph onto Vsph is
written as Psph =

∑
n |Ψn

sph〉〈Ψn
sph|, where Ψn

sph are the or-
thonormal basis functions of the space Vsph. The Ψ

n
sph are

constructed as follows:
∑

βx

〈Φ̂J=0
3α (β′x = β′y = β′z)|Φ̂J=0

3α (βx = βy = βz)〉gn(βx) =

µng
n(β′x),∑

βx

gm(βx)g
n(βx) = δmn,

Ψn
sph =

1√
µn

∑

βx

gn(βx)Φ̂
J=0
3α (βx = βy = βz).

ΨJ=0
λ=2 can be expanded by a linear combination of Ψn=1

sph ,

Ψn=2
sph · · · ∈ Vsph and a vector χ ∈ ⊥Vsph ∩Wdef as

ΨN,J=0
λ=2 = c1Ψ

n=1
sph + c2Ψ

n=2
sph + · · ·+ χ,

where the relation, Psphχ = 0 is satisfied. The
spherical condensate component can be calculated as

〈ΨN,J=0
λ=2 |Psph|ΨN,J=0

λ=2 〉. When the number of the adopted
components Ψn

sph in Psph is 16, where βx = βy = βz varies
from 0.5 fm to 15.5 fm by 1 fm steps, the obtained val-
ues of the spherical condensate component are 92.1% and
90.6% for the Volkov force, No. 1 and No. 2, respectively.
Even when we decreased the number of the adopted com-
ponents to 13 from 16, i.e. βx = βy = βz = 0.5 fm to
12.5 fm by 1 fm steps, there appeared no difference of
the obtained values at least to six significant figures for
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both forces. From this result it follows that our obtained
values have already converged. The large magnitudes of
these values imply that ΨJ=0

λ=2 is composed of the spherical
condensate component by more than 90%. At the same
time we have to note that some amount (less than 10%)
of the deformed component orthogonal to the spherical
one is necessary in order to have quantitatively good re-
production of the observed results.

4.4 Vibrational structure of the
angular-momentum–projected wave function of the
deformed condensate

The expressions of the leading terms of the
angular-momentum–projected wave functions of the
deformed condensate, eq. (19) for the 0+ state and
eq. (20) for the 2+ state, can be rewritten as follows:

A
[
exp

{
− 2

B2

n−1∑

i=1

µiξ
2
i

}
φn(α)

]
=

A
[
exp

{
− 2

B2

n∑

i=1

(
Xi −XG

)2}
φn(α)

]
, (43)

1

B2
≡ 2

3B2
x

+
1

3B2
z

,

for the 0+ state, and

A
[
exp

{
− 2

B2

n−1∑

i=1

µiξ
2
i

} n−1∑

i=1

µiξ
2
i Y20(ξ̂i)φ

n(α)

]
=

A
[
exp

{
− 2

B2

n∑

i=1

(
Xi −XG

)2
}

×
n∑

i=1

(Xi −XG)
2Y20( ̂Xi −XGi)φ

n(α)

]
=

n∑

j=1

A
[
(Xj −XG)

2Y20( ̂Xi −XGi)

×
n∏

i=1

exp

{
− 2

B2
(Xi −XG)

2

}
φ(αi)

]
, (44)

for the 2+ state. The functional form of eq. (43) means,
as was mentioned several times, that all n α-particles oc-
cupy an identical S-orbit, exp{−(2/B2)(X −XG)

2}. On
the other hand, the functional form of eq. (44) means that
one α-particle occupies a D-orbit, (X − XG)

2Y20(X −
XG) exp{−(2/B2)(X − XG)

2} while the other (n − 1)
α-particles occupy an identical S-orbit, exp{−(2/B2)(X−
XG)

2}. Therefore, our 2+ wave function constructed by
the angular-momentum projection of the deformed con-
densate wave function has the structure that one α-
particle is excited from the S-orbit into a D-orbit, while
the other (n − 1) α-particles remain in the identical S-
orbit which is occupied by all n α-particles in the case of
the 0+ state.

We can yet give another explanation for the 2+ wave
function and this explanation can be applied to any wave
function with spin obtained by the angular-momentum
projection of the deformed condensate wave function. We
rewrite eq. (18) as follows:

exp

{
−2

n−1∑

i=1

µi

(
ξ2ix + ξ2iy
B2

x

+
ξ2iz
B2

z

)}
=

exp

{
− 2

B2

n∑

i=1

(Xi −XG)
2

}

×
{
1 + σD̂ +

σ2

2!
D̂2 +

σ3

3!
D̂3 + · · ·

}
, (45)

D̂ =
n∑

i=1

(Xi −XG)
2Y20( ̂Xi −XG),

σ = −2

3

√
16π

5

(
1

B2
x

− 1

B2
z

)
.

We can say that the leading term of the 2+ state is
created from the 0+ state by one D-phonon–like excita-

tion expressed by the operator D̂. Similarly, the leading
term of the 4+ state is created by two D-phonon–like

excitation expressed by the operator (D̂2)J=4, where

(D̂2)J=4 stands for the operator obtained from D̂2 by the
angular-momentum projection onto J = 4. We can eas-
ily see that any spin-J wave function obtained from the
deformed condensate wave function has the leading term
which has the form of multiple D-phonon–like excitation

from the 0+ state expressed by the operator (D̂m)J .
The above argument shows that all the angular-

momentum–projected wave functions of the deformed con-
densate can be viewed to express the state of vibration-
like excitation rather than the rotational excitation. How-
ever, the GCM calculation by superposing the spin-
projected condensate wave function is not directly re-
lated to the diagonalization of the Hamiltonian whithin
the multi-phonon–like subspace with definite J , because
in the GCM calculation we superpose phonon-like states
with different oscillator parameters B.

5 Conclusion

We investigated the states with Jπ = 0+, 2+ and 4+, of
12C with the excitation energy less than about 15 MeV by
using the 3α condensate wave function with spatial defor-
mation. In order to discuss the total alpha decay widths as
well as the energy positions, we applied the ACCC method
to the wave function.

We could successfully reproduce both the binding en-
ergy and total alpha decay width of the recently observed
2+
2 state. The observed values of the energy and width

are 2.6 ± 0.3 MeV and 1.0 ± 0.3 MeV, respectively. The
calculated binding energy and width are 2.1 MeV and
0.64 MeV, respectively, for the use of Volkov No. 1 force.
For the use of Volkov No. 2 force, when the binding energy
is adjusted to 2.0 MeV with the nuclear interaction being
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a little weakened, the width is calculated as 0.61 MeV.
We found that in the case where the binding energy of
the 2+

2 state is adjusted to 0.26 MeV, which is the calcu-
lated binding energy of the 0+

2 , the density distribution of
the 2+

2 state is almost the same as that of the 0+
2 state

for the use of Volkov No. 2 force. And then, the kinetic
energy, nuclear interaction energy, and Coulomb interac-
tion energy of the calculated 2+

2 state are found to be very
similar to those of the 0+

2 state.
We devised a new technique to extract the proper reso-

nance component from the wave function with some mix-
ture of continuum states which are obtained within the
bound-state approximation. This technique allows us to
obtain pure resonance wave functions very easily within
the framework of the bound-state approximation. Detailed
discussions about this new method will be given in our
forthcoming paper. As a result of applying this method
to our present problem, we found that the pure resonance
2+
2 wave function which gives almost the same resonance

energy as the above-mentioned ACCC result has a large
overlap with the single condensate wave function of 3α
gas-like structure. The squared overlap value is more than
88% when we employ the Volkov No. 2 force.

These facts imply that the 2+
2 state has a similar

structure to that of the 0+
2 state which has a gas-like

structure composed of three-alpha clusters and is of Bose-
condensate character. The 2+

2 state is obtained by promot-
ing just one alpha cluster out of the condensate of the 0+

2
state into a D-wave. The result of the present paper about
the 2+

2 state of 12C suggests that for more heavier nuclei,
for instance, 16O, there would exist non-zero spin excited
states which are members of an alpha cluster condensate
family. The 0+

2 state is a state of very dilute density which
is about 1/3 of the ground-state density. The density of
the 2+

2 state is pointed out to be even more dilute than
that of the 0+

2 state. The 2+
2 state has an extraordinarily

large r.m.s. radius such that the volume of the 2+
2 state is

a factor ten larger than the one of the ground state. We
call such a wide α configuration an α-halo state. These
dilute densities or large radii of the 0+

2 and 2+
2 states are

probably the reason why no-core shell model calculations
of 12C completely fail to account for the 0+

2 and 2+
2 states

in spite of their good reproduction of the ground-state
band [24]. All these above features hint to the possibility
of a description of these states in terms of ideal bosons as
this has indeed been considered in [2].

We failed to give a clear interpretation of the 0+
3 state.

As mentioned in the text, two recent works [11,12] ob-
tained a practically identical structure for the 0+

3 state
consisting out of a 8Be-like entity with a third α attached
to it by about 30◦ off the symmetry axis of the first two
α’s. Though these calculations fail to reproduce the 0+

3
position by several MeV, such results are nevertheless of-
ten indicative of the geometrical structure of the state as
this is also the case for the 0+

2 state in 12C obtained from
an AMD aproach [11]. In these calculations, the 0+

3 state
looks similar to a chain state but not quite. May be a very
prolate deformed α condensate wave function could eluci-
date the physical interpretation of the state. It is our next

task to investigate the 0+
3 state by incorporating strongly

prolate condensed wave functions in the GCM calculation.
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Appendix A. Matrix elements of the density

operator

We explain how to calculate the matrix elements of the
density operator defined in eq. (36). Since the density op-
erator maintains the rotational invariance, the expectation
value by the normalized wave function with good angular
momentum can be written as follows:

〈
Φ̂NJ
nα (β)

∣∣∣ρ̂(a)
∣∣∣Φ̂NJ

nα (β
′)
〉
=

〈
Φ̂J
nα(β)

∣∣∣ρ̂(a)
∣∣∣Φ̂J

nα(β
′)
〉

√〈
Φ̂J
nα(β)

∣∣∣Φ̂J
nα(β)

〉〈
Φ̂J
nα(β

′)
∣∣∣Φ̂J

nα(β
′)
〉 =

〈
Φ̂nα(β)

∣∣∣ρ̂(a)
∣∣∣Φ̂J

nα(β
′)
〉

√〈
Φ̂nα(β)

∣∣∣Φ̂J
nα(β)

〉〈
Φ̂nα(β′)

∣∣∣Φ̂J
nα(β

′)
〉 .

(A.1)

In order to evaluate the above expression, we make use
of a similar technique to the one used in eq. (15). At the
final step of eq. (15), we change the numerator as follows,
keeping the denominator unchanged:

∫
d cos θdJ00(θ)

1

P0(θ)

〈
Φnα(β)

∣∣∣ρ̂(a)R̂y(θ)
∣∣∣Φnα(β

′)
〉
=

∫
d cos θdJ00(θ)

〈
Φnα(β)

∣∣∣δ(XG)ρ̂(a)R̂y(θ)
∣∣∣Φnα(β

′)
〉

〈
ΦXG

nα (β)
∣∣∣δ(XG)R̂y(θ)

∣∣∣ΦXG

nα (β′)
〉 =

∫
d cos θdJ00(θ)

〈
Φnα(β)

∣∣∣δ(XG)ρ̂(a)R̂y(θ)
∣∣∣Φnα(β

′)
〉
.

(A.2)

Here, we made use of the relation of eq. (11)

Φnα(β) = Q ΦXG

nα (β) Φ̂nα(β), (A.3)
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where Q is a constant, ΦXG

nα (β) is defined as

ΦXG

nα (β) ≡ exp

(
−

∑

k=x,y,z

2n

B2
k

X2
Gk

)
, (A.4)

and use is made of the trivial relation,

〈
ΦXG

nα (β)
∣∣∣δ(XG)R̂y(θ)

∣∣∣ΦXG

nα (β′)
〉
= 1. (A.5)

Next, by using the following relation,

∫
d2â

∑

lm

Y ∗
lm( ̂ri −XG)Ylm(â) = 1, (A.6)

the density operator is represented below as

ρ̂(a) =
1

A

A∑

i=1

δ(|ri −XG| − a) =

a2

A

A∑

i=1

∫
d2â δ(ri −XG − a). (A.7)

Here â and ̂ri −XG are polar angles of a and ri −XG,
respectively. Substituting eq. (A.7) into the final expres-
sion of eq. (A.2), we only have to evaluate the following
expression, while the integral over the variables, cos θ in
eq. (A.2) and â in eq. (A.7), is numerically performed af-
terwards:

〈
Φnα(β)

∣∣∣∣∣ δ(XG)

A∑

i=1

δ(ri−XG−a)R̂y(θ)

∣∣∣∣∣Φnα(β
′)

〉
=

〈
Φnα(β)

∣∣∣∣∣ δ(XG)
A∑

i=1

δ(ri − a)R̂y(θ)

∣∣∣∣∣Φnα(β
′)

〉
=

∫
d3k

(2π)3

〈
Φnα(β)

∣∣∣∣∣e
ik·XG

A∑

i=1

δ(ri − a)R̂y(θ)

∣∣∣∣∣Φnα(β
′)

〉
.

(A.8)

Considering the fact that the wave function, Φnα(β) is
represented by using Brink’s wave function, as

R̂y(θ)
∣∣∣Φnα(β)

〉
=

∫
d3R1 · · · d3Rn exp

(
−

n∑

i=1

∑

k=x,y,z

R2
ik

β2
k

)

×
∣∣∣ΦB(R̂−1

y (θ)R1, · · · , R−1
y (θ)Rn)

〉
=

∫
d3R1 · · · d3Rn

× exp

{
−

n∑

i=1

∑

k=x,y,z

(R̂y(θ)Ri)
2
k

β2
k

}∣∣∣ΦB(R1, · · · ,Rn)
〉
,

(A.9)

we should be able to evaluate the following quantity:
∫

d3k

(2π)3

〈
ΦB(R1, · · · ,Rn)

∣∣∣∣ e
ik·XG

×
A∑

i=1

δ(ri − a)

∣∣∣∣Φ
B(R′

1, · · · ,R′
n)

〉
=

∫
d3k

(2π)3

〈
ΦB(R1, · · · ,Rn)

∣∣∣∣
A∏

j=1

exp(
i

A
k · rj)

×
A∑

i=1

δ(ri − a)

∣∣∣∣Φ
B(R′

1, · · · ,R′
n)

〉
.

(A.10)

All of the following procedures are well known and can be
straightforwardly performed, once a single-particle wave
function, ϕi(r), and a modified single-particle wave func-
tion, ϕ′i(r), are introduced as follows:

ϕi(r) = (πb2)−3/4 exp

(
− 1

2b2
(r −Ri)

2

)
,

ϕ′i(r) = (πb2)−3/4 exp

(
− 1

2b2
(r −R′

i)
2 +

i

A
k · r

)
,

(i = 1, · · · , n).
(A.11)

The overlap kernel between ϕi(r) and ϕ
′
j(r) is calculated

as

D̃ij ≡ 〈ϕi|ϕ′j〉 =

exp

(
− b2k2

4A2
+

i

2A
k · (Ri +R′

j)

)
Dij , (A.12)

where we use a shorthand notation, Dij = 〈ϕi|ϕj〉. D̃ij

and Dij are defined as n × n matrices, and the inverse

matrix of D̃ij is also calculated easily,

(D̃−1)ij ≡ 〈ϕi|ϕ′j〉−1 =

exp

(
b2k2

4A2
− i

2A
k · (R′

i +Rj)

)
(D−1)ij .

(A.13)

Now we will see that using eqs. (A.12), (A.13), eq. (A.10)
is represented as follows:

∫
d3k

(2π)3

〈
ΦB(R1, · · · ,Rn)

∣∣∣∣
A∏

j=1

exp(
i

A
k · rj)

×
A∑

i=1

δ(ri − a)

∣∣∣∣Φ
B(R′

1, · · · ,R′
n)

〉
=

∫
d3k

(2π)3
4|D̃|4

n∑

i,j

〈ϕi|δ(r − a)|ϕ′j〉(D̃−1)ji. (A.14)

After substituting the explicit formulae of D̃ij and (D̃−1)ji
into the above expression and performing the Gauss inte-
gral over the variable, k, analytically, we finally arrive at
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the following formula:

∫
d3k

(2π)3
4|D̃|4

n∑

i,j

〈ϕi|δ(r − a)|ϕ′j〉(D̃−1)ji =

4

(2π)3

{
4A2

b4(A− 1)

}3/2

|D|4
n∑

ij

Dij(D
−1)ji

× exp

[
− 1

b2

(
a−

Ri +R′
j

2

)2

− 1

b2(A− 1)

{
a+ 2

n∑

k

(Rk +R′
k)−

Ri +R′
j

2

}2
]
.

(A.15)

Note that it is not complicated to perform the Gaus-
sian integral over the variables,R1, · · · ,Rn. As mentioned
above, the integral over the variables, â and cos θ, is per-
formed numerically.
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Kamimura, K. Katō, Y. Suzuki, E. Uegaki, Prog. Theor.
Phys. Suppl. 68, 29 (1980).

4. E. Uegaki, S. Okabe, Y. Abe, H. Tanaka, Prog. Theor.
Phys. 57, 1262 (1977); E. Uegaki, Y. Abe, S. Okabe, H.
Tanaka, Prog. Theor. Phys. 59, 1031 (1978); 62, 1621
(1979).

5. Y. Fukushima, M. Kamimura, in Proceedings of the Inter-

national Conference on Nuclear Structure, Tokyo, 1977,
edited by T. Marumori, J. Phys. Soc. Jpn. Suppl. 44, 225
(1978); M. Kamimura, Nucl. Phys. A 351, 456 (1981).

6. H. Horiuchi, Prog. Theor. Phys. 51, 1266 (1974); 53, 447
(1975).

7. Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke,
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